Подход к учёту основных стресс-факторов, влияющих на деградацию аккумуляторных батарей в составе систем накопления электроэнергии
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Global Storage Market to Double Six Times by 2030. [Электронный ресурс]. URL: https://about.bnef.com/blog/global- storage-market-double-six-times-2030/ (дата обращения: 15.08.2023).
Применение систем накопления энергии в России: возможности и барьеры. Экспертно-аналитический отчет. Инфраструктурный центр EnergyNet, 2019. — 158 c.
Илюшин П. В. Повышение надёжности функционирования распределительных электрических сетей за счёт эффективного применения систем накопления электроэнергии // Электроэнергия. Передача и распределение. 2022. № 6. С. 64 – 74.
Jing Y. A Grid-Connected Microgrid Model and Optimal Scheduling Strategy Based on Hybrid Energy Storage System and Demand-Side Response / Y. Jing, H. Wang, Y. Hu, C. Li // Energies. 2022. 15(3). 1060.
Обухов С. Г., Плотников И. А., Масолов В. Г. Исследование эксплуатационного ресурса аккумуляторных батарей в изолированных энергетических системах с возобновляемыми источниками энергии // iPolytech Journal. 2021. Т. 25. № 4. C. 463 – 477.
Yang Y. Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving / Y. Yang, H. Li, A. Aichhorn, J. Zheng, M. Greenleaf // IEEE Transactions on smart grid. 2013. Vol. 5. No. 2. P. 982 – 991.
Wang L. Insights for understanding multiscale degradation of LiFePO4 cathodes / L. Wang, J. Qiu, X. Wang, L. Chen, G. Cao, J. Wang, X. He // eScience. 2022. Vol. 2. No. 2. P. 125 – 137.
Narayan N. Estimating battery lifetimes in Solar Home System design using a practical modelling methodology / N. Narayan, T. Papakosta, V. Vega-Garita, Z. Qin, J. Popovic-Gerber, P. Bauer, M. Zeman // Applied energy. 2018. Vol. 228. P. 1629 – 1639.
Olmos J. Modelling the cycling degradation of Li-ion batteries: Chemistry influenced stress factors / J. Olmos, I. Gandiaga, A. Saez-de-Ibarra, X. Larrea, T. Nieva, I. Aizpuru // Journal of Energy Storage. 2021. Vol. 40. 102765.
Shang Y. Stochastic dispatch of energy storage in microgrids: An augmented reinforcement learning approach / Y. Shang, W. Wu, J. Guo,. Z. Lv, Z. Ma, W. Sheng, R. Chen // Applied Energy. 2020. Vol. 261. 114423.
Ecker M. Calendar and cycle life study of Li (NiMnCo) O2-based 18650 lithium-ion batteries / M. Ecker, N. Nieto, S. Käbitz, J. Schmalstieg, H. Blanke, A. Warnecke, D. U. Sauer // Journal of Power Sources. 2014. Vol. 248. P. 839 – 851.
Schmalstieg J. A Holistic Aging Model for Li (NiMnCo)O2 Based 18650 Lithium-Ion Batteries / J. Schmalstieg, S. Käbitz, M. Ecker, D. U. Sauer // J. Power Sources. 2014. Vol. 257. P. 325 – 334.
Alipour M. A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells / M. Alipour, C. Ziebert, F. V. Conte, R. Kizilel // Batteries. 2020. Vol. 6. 35.
Stroe D. I. Accelerated lifetime testing methodology for lifetime estimation of lithium-ion batteries used in augmented wind power plants / D. I. Stroe, M. Świerczyński, A. I. Stan, R. Teodorescu, S. J. Andreasen // IEEE Transactions on Industry Applications. 2014. Vol. 50(6). P. 4006 – 4017.
Wang J. Degradation of lithium-ion batteries employing graphite negatives and nickel – cobalt – manganese oxide+ spinel manganese oxide positives: Part 1, aging mechanisms and life estimation / J. Wang, J. Purewal, P. Liu, J. Hicks-Garner, S. Soukazian, E. Sherman, M. W. Verbrugge // Journal of Power Sources. 2014. Vol. 269. P. 937 – 948.
Saxena S. Battery stress factor ranking for accelerated degradation test planning using machine learning / S. Saxena, D. Roman, V. Robu, D. Flynn, M. Pecht // Energies. 2021. Vol. 14. 723.
Uddin K., Dubarry M., Glick M. B. The viability of vehicle-to-grid operations from a battery technology and policy perspective // Energy Policy. 2018. Vol. 113. P. 342 – 347.
Dubarry M., Qin N., Brooker P. Calendar aging of commercial Li-ion cells of different chemistries – A review // Current Opinion in Electrochemistry. 2018. Vol. 9. P. 106 – 113.
He W. A physics-based electrochemical model for lithium-ion battery state-of-charge estimation solved by an optimized projection-based method and moving-window filtering / W. He, M. Pecht, D. Flynn, F. Dinmohammadi // Energies. 2018. Vol. 11. 2120.
Shin H., Hur J. Optimal energy storage sizing with battery augmentation for renewable-plus-storage power plants // IEEE Access. 2020. Vol. 8. P. 187730 – 187743.
Dulout J. Optimal sizing of a lithium battery energy storage system for grid-connected photovoltaic systems / J. Dulout, B. Jammes, C. Alonso, A. Anvari-Moghaddam, A. Luna, J. M. Guerrero // In proc. of 2017 IEEE Second International Conference on DC Microgrids (ICDCM), Nuremburg, Germany, 27 – 29 June 2017. P. 582 – 587.
Diaz V. S. Comparative analysis of degradation assessment of battery energy storage systems in PV smoothing application / V. S. Diaz, D. A. Cantane, A. Q. O. Santos, O. H. Ando Junior // Energies. 2021. Vol. 14. 3600.
Vermeer W., Chandra Mouli G. R., Bauer P. Real-time building smart charging system based on PV forecast and Li-Ion battery degradation // Energies. 2020. Vol. 13. 3415.
Lee M. An analysis of battery degradation in the integrated energy storage system with solar photovoltaic generation / M. Lee, J. Park, S. I. Na, H. S. Choi, B. S. Bu, J. Kim // Electronics. 2020. Vol. 9. No. 4. 701.
Sandelic M., Stroe D. I., Iov F. Battery storage-based frequency containment reserves in large wind penetrated scenarios: A practical approach to sizing // Energies. 2018. Vol. 11. 3065.
Wu Y. Energy storage capacity allocation for distribution grid applications considering the influence of ambient temperature / Y. Wu, T. Xu, H. Meng, W. Wei, S. Cai, L. Guo // IET Energy Systems Integration. 2022. Vol. 4. No. 1. P. 143 – 156.
Wang Y. Stochastic coordinated operation of wind and battery energy storage system considering battery degradation. Journal of Modern Power Systems and Clean / Y. Wang, Z. Zhou, A. Botterud, K. Zhang, Q. Ding // Energy. 2016. Vol. 4. No. 4. P. 581 – 592.
Gräf D. What drives capacity degradation in utility-scale battery energy storage systems? The impact of operating strategy and temperature in different grid applications / D. Grдf, J. Marschewski, L. Ibing, D. Huckebrink, M. Fiebrandt, G. Hanau, V. Bertsch // Journal of Energy Storage. 2022. Vol. 47. 103533.
Scarabaggio P. Smart control strategies for primary frequency regulation through electric vehicles: A battery degradation perspective / P. Scarabaggio, R. Carli, G. Cavone, M. Dotoli // Energies. 2020. Vol. 13. 4586.
Haidl P. Lifetime analysis of energy storage systems for sustainable transportation / P. Haidl, A. Buchroithner, B. Schweighofer, M. Bader, H. Wegleiter // Sustainability. 2019. Vol. 11(23). 6731.
Yan G, Liu D., Li J., Mu G. A cost accounting method of the Li-ion battery energy storage system for frequency regulation considering the effect of life degradation / G. Yan, D. Liu, J. Li, G. Mu // Protection and control of modern power systems. 2018. Vol. 3. No. 1. P. 1 – 9.
Baure G., Dubarry M. Durability and reliability of EV batteries under electric utility grid operations: Impact of frequency regulation usage on cell degradation // Energies. 2020. Vol. 13(10). 2494.
Świerczyński M. Field experience from Li-ion BESS delivering primary frequency regulation in the Danish energy market / M. Úwierczyński, D. I. Stroe, R. Lærke, A. I. Stan, P. C. Kjær, R. Teodorescu, S. K. Kær // ECS Transactions. 2014. Vol. 61. No. 37. 1.
Stroe D. I. Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: A battery lifetime perspective / D. I. Stroe, V. Knap, M. Swierczynski, A. I. Stroe, R. Teodorescu // IEEE transactions on industry applications. 2016. Vol. 53. No. 1. P. 430 – 438.
Peng C. An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits / C. Peng, J. Zou, L. Lian, L. Li // Applied energy. 2017. Vol. 190. P. 591 – 599.
Dik A., Omer S., Boukhanouf R. Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration // Energies. 2022. Vol. 15. 803.
Lambert T., Gilman P., Lilienthal P. Micropower system modeling with HOMER // Integration of alternative sources of energy. 2006. Vol. 1. No. 1. P. 379 – 385.
Naumann M. SimSES: Software for Techno-Economic Simulation of Stationary Energy Storage Systems / M. Naumann, C. N. Truong, M. Schimpe, D. Kucevic, A. Jossen, H. C. Hesse. In Proceedings of the International ETG Congress 2017, Berlin, Germany, 28 – 29 November 2017. P. 1 – 6.
Zeynali S. Stochastic energy management of an electricity retailer with a novel plug-in electric vehicle-based demand response program and energy storage system: A linearized battery degradation cost model / S. Zeynali, N. Rostami, A. Ahmadian, A. Elkamel // Sustainable Cities and Society 2021. Vol. 74. 103154.
Li Y. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review / Li Y., et al. // Renewable and sustainable energy reviews. 2019. Т. 113. 109254.
DOI: http://dx.doi.org/10.34831/EP.2023.27.45.002
Ссылки
- На текущий момент ссылки отсутствуют.
© 1998 – 2023 НТФ «Энергопрогресс»
Адрес редакции:
129090, г. Москва, ул. Щепкина, д. 8
Телефон: +7 495 234-74-21
E-mail: energetick@mail.ru, energetik@energy-journals.ru
Наши партнеры
Выставки: