Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Роль угольных технологий с низкими выбросами в Азии

Г. А. Рябов, И. В. Артемьева

Аннотация


--

Полный текст:

PDF

Литература


Kelsall G., Baruya P. The role of low emission technologies in net zero Asia future, International Centre for Sustainable Carbon // IEA. 2022. January.

IPCC (2021). Climate change 2021 ‒ the physical science basis, Available from: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf. Intergovernmental Panel on Climate Change, IPCC AR6 WGI, 41 pp (Jul 2021).

IEA (2021e). Coal 2021 – analysis and forecast to 2024. Available from: https://www.iea.org/reports/coal-2021 IEA, Paris, France, 127 p. (Dec 2021).

Mills S. Potential markets for high efficiency low emissions coal-fired power plants. CCC/312. ‒ London, UK: International Centre for Sustainable Carbon, 2021 (Jun). ‒ 133 p.

IEA (2020a). Coal 2020 ‒ Analysis and forecast to 2025. ‒ Paris, France: IEA. ‒ 124 pp (Dec 2020). Available from: https://iea.blob.core.windows.net/assets/00abf3d2-4599-4353-977c-f80e9085420/Coal_2020.pdf

IEA (2021a). Net Zero by 2050 ‒ a roadmap for the global energy sector, Available from: https://www.iea.org/reports/net-zero-by-2050 IEA special report, Paris, 222 p. (May 2021).

IChemE (2018). A Chemical Engineering Perspective on the Challenges and Opportunities of Delivering Carbon Capture and Storage at Commercial Scale, Available from: https://www.icheme.org/media/1401/CCUS-report-2018.pdf led by the IChemE Energy Centre Carbon Capture, Utilization and Storage Task Group, Rugby, UK, 28 p. (Apr 2018).

IRENA (2019b). Global energy transformation:- a roadmap to 2050 (2019 edition), Available from: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050- 2019Edition International Renewable Energy Association, Abu Dhabi, 52 p. (2019).

GCCSI (2020). Global Status of CCUS, Targeting Climate Change, Available from: https://www.globalccsinstitute.com/wp-content/uploads/2020/12/Global-Status-of-CCS-Report-2020_FINAL_December11.pdf Global CCS Institute, Melbourne, Australia, 81 p. (Dec 2020).

Bruce C. Learning by doing: the cost reduction potential for CCUS at coal-fired power plants. / C. Bruce, B Jacobs., S. Giannaris, B. Hardy. Available from: https://CCUSknowledge.com/pub/CIAB_Report_LessonsByDoing_CCUS_onCoal_Nov2019(1).pdf Coal Industry Advisory Board Submission to the International Energy Agency, prepared by the International CCS Knowledge Centre, 43 p. (Nov 2019).

USDOE (2017) Accelerating Breakthrough Innovation in Carbon Capture, Utilization, and Storage, Available from: https://www.energy.gov/fe/downloads/accelerating-breakthrough-innovationcarbon- capture-utilization-and-storage Report of the Carbon Capture, Utilization and Storage Experts’ Workshop, Houston, US, US Department of Energy’s Office of Fossil Energy, 291 p. (Feb 2018).

Zapantis A., Townsend A., Rassool D. Policy Priorities to Incentivise Large Scale Deployment of CCUS, Available from: https://www.globalCCUSinstitute.com/wp-content/uploads/2019/04/TLReport-Policy-prorities-to-incentivise-the-large-scale-deployment-of-CCUS-digital-final-2019-1.pdf Global CCUS Institute, Melbourne, Australia, 32 p. (Apr 2019).

Feron P. Towards Zero Emissions from Fossil Fuel Power Stations / P. Feron, A. Cousins, K. Jiang et al. // International Journal of Greenhouse Gas Control. 2019. No. 5. P. 188‒202.

IEAGHG (2019). Towards zero emissions CCS in power plants using higher capture rates or biomass, Available from: https://climit.no/app/uploads/sites/4/2019/09/IEAGHG-Report-2019-02- Towards-zero-emissions.pdf IEAGHG Technical Report 2019-02, Cheltenham, UK, 100 pp (Mar 2019).

IEA (2020d). Transforming industry through CCUS, Available from: https://iea.blob.core.windows.net/assets/0d0b4984-f391-44f9-854ffda1ebf8d8df/Transforming_Industry_through_CCUS.pdf IEA, Paris, 60 p. (May, 2020).

Gil M. V., Rubiera F. Coal and biomass cofiring- fundamentals and future trends. New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking. Suárez-Ruiz I, Rubiera F., Diez M. A. (eds.) // Woodhead Publishing. 2019. (Aug). P. 117‒140.

Zhang X. (2020) Technology developments in the cofiring of biomass. CCC/305. ‒ London, UK: International Centre for Sustainable Carbon, 2020 (Aug), ‒ 80 p.

Рябов Г. А. Совместное сжигание биомассы и ископаемых топлив – путь к декарбонизации производства тепла и электроэнергии // Теплоэнергетика. 2022. № 6. С. 1–15. DOI: 10.1134/S0040363622060054.

PwC (2021a). Biomass co-firing in coal-fired power plants: PLN's ambition to drive green energy, Available from: https://www.pwc.com/id/en/media-centre/infrastructure-news/may-2021/biomass-co-firing-in-coal-fired-power-plants-pln-s-ambition-to-drive-green-energy.html PWC Indonesia media centre (May 2021).

Truong A., Ha-Duong M., Nguyen-Trinh H. A. Feasibility and sustainability of co-firing biomass in coal power plants in Vietnam. In 5th Workshop on Cofiring biomass with coal, 16‒17 Sept 2015, Drax, UK, 21 p.

Xing X. Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China / X. Xing, R. Wang, N. Bauer et al. // Nature Communications. 2021 (May). No. 12. P. 1‒12.

IEA (2021c). The Role of Low-Carbon Fuels in the Clean Energy Transitions of the Power Sector/ Available from: https://www.iea.org/reports/the-role-of-low-carbon-fuels-in-the-clean-energytransitions-of-the-power-sector IEA, Paris, 116 p. (Oct 2021).

Kakaras (2021). Current picture of co-firing and future prospects for hydrogen-rich fuels, Available from: https://iea.blob.core.windows.net/assets/a76b2cc9-f7e3-459e-945e-91b8ff54d0fc/210318_Mitsubishi_E_Kakaras.pdf Mitsubishi Power Europe, presented at Berlin energy transition dialogue, 33 p. (Mar 2021).

Walton R. JERA studying co-firing attributes of ammonia in burners at coal-fired Japanese power station // Power Engineering. 2021. Jul. Available from: https://www.power-eng.com/coal/jera-studying-co-firing-attributesof- ammonia-in-burners-at-coal-fired-japanese-power-station.

Oki N. Japan’s Itochu joins forces on Canadian ammonia output. ‒ London, UK: Argus Media Ltd, 2021 (Aug). Available from: https://www.argusmedia.com/en/news/2240883-japans-itochu-joins-forces-on-canadian-ammoniaoutput.

Zhang X. Support mechanisms for cofiring biomass with coal. CCC/294. ‒ London, UK: International Centre for Sustainable Carbon, 2019 (Jun). ‒ 60 p.

Sun R., Li W. Development prospects of co-firing biomass with coal in China, IEA Clean Coal Centre 7th cofiring biomass with coal workshop, 7‒8 Jun 2017, Beijing, China. ‒ 27 p.

Lin J. Coal power sector in China, Japan and South Korea- Current status and the way forward for a cleaner energy system / J. Lin, T. Momoi, J. Lee et al. ‒ China: China Association for NGO Cooperation Beijing, 2019 (Feb). ‒ 59 p.

Uno H., Kikuchi Y. Future perspectives- biomass co-firing in coal-fired power generation attracting domestic attention, Available at: https://www.mitsui.com/mgssi/en/report/detail/__icsFiles/afieldfile/2018/01/12/170703m_uno kikuchi_e.pdf Mitsui & Co Global Strategic Studies Institute Monthly Report, 5 p. (Jul 2017).

Indonesia LTR (2021). Long-Term Strategy for Low Carbon and Climate Resilience 2050, Available from: https://unfccc.int/sites/default/files/resource/Indonesia_LTS-LCCR_2021.pdf Indonesia LTS-LCCR 2050, 132 p. (July 2021).

Truong A. Reducing emissions of the fast-growing Vietnamese coal sector: the chances offered by biomass co-firing / A. Truong, P. Patrizio, S. Leduc et al. // Journal of Cleaner Production/ 2019 (Apr). No. 215. P 1301‒1311.

S&P Global. World Electric Power Plants database. ‒ London, UK: S&P Global Market Intelligence, 2020 (Dec).

Lockwood T. A technology roadmap for high efficiency low emissions coal power plant. CCC/309. ‒ London, UK: International Centre for Sustainable Carbon, 2021 (Mar). ‒ 92 p.

Sloss L. (2019) Technology readiness of advanced coal-based power generation systems. CCC/292. ‒ London, UK: International Centre for Sustainable Carbon, 2019 (Feb). ‒ 113 p.

Wiatros-Motyka M. Increasing efficiency of pulverized coal-fired power plant. CCC/310. ‒ London, UK: International Centre for Sustainable Carbon, 2021 (Apr). ‒ 97 p.

Pande S. A long view on AUSC programmes calls for vastly improved global technology. Presentation at: 3rd workshop on advanced ultrasupercritical power plant, Rome, Italy, 13‒14 Dec 2017. ‒ 14 p.

Fukuda M. 700℃ AUSC technology development in Japan at Joint EPRI-123HiMAT International Conference on Advances in High Temperature Materials, Nagasaki, Japan (Oct 2019). Available at: http://www.kntec.net/2019/epri-123himat/ presented

Ye Y. Development of coal-fired power generation technology in China. Presentation at: 9th international conference on clean coal technologies, Houston, TX, USA, 3‒7 Jun 2019. ‒ 30 p.

Dongfang (2017) The technology development of high efficiency 700 °C grade steam turbine. Presentation at: 3rd workshop on advanced ultrasupercritical power plant, Rome, Italy, 13‒14 Dec 2017. ‒ 26 p.

Feng W. China’s national demonstration project achieves 50 % net efficiency with 600 degrees C class materials // Fuel. 2018 (July). No. 223. P. 344‒353.

Janowczyk D. Derates and Outages Analysis ‒ A Diagnostic Tool for Performance Monitoring of SaskPower’s Boundary Dam Unit 3 Carbon Capture Facility / D. Janowczyk, S. Giannaris, K. Hill et al. 15th International Conference on Greenhouse Gas Control Technologies GHGT-15, 15‒18 March 2021, Abu Dhabi, UAE. ‒ 13 p. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3820207

Sheng L. Personal communication. ‒ Beijing, China: China Energy via CIAB, 2021 (Aug).

Liu L. Personal communication. ‒ Beijing, China: China Huaneng Group, 2021 (Oct).

Zhu Q. Power generation from coal using supercritical CO2 cycle, CCC/280. ‒ London, UK: International Centre for Sustainable Carbon, 2018 (Oct). ‒ 94 p.

Lu X., Goff A., Fetvedt J. Allam Cycle Zero Emission Coal Power- Prefeed Final Report. Available from: https://netl.doe.gov/sites/default/files/2020-06/8-Rivers-Capital-Final-Pre-FEEDReport- Allam-Cycle-Coal-%208924331RFE000015-Public-Version-May-19.pdf Ref No.: 89243319CFE000015 Coal-Based Power Plants of the Future, 88 pp (May 2020).

Kelsall G. Hydrogen production from coal. ICSC/313. ‒ London, UK: International Centre for Sustainable Carbon, 2021 (Aug). ‒ 109 p.

Zhu Q. (2017) Power generation from coal using supercritical CO2 cycle, CCC/280. ‒ London, UK: International Centre for Sustainable Carbon, 2018 (Oct). ‒ 94 p.

Zhang X. Current status of stationary fuel cells for coal power generation // Clean Energ. 2018 (Oct). Vol. 2; Iss. 2. 126–139 p.

Kobayashi Y. Extremely Highefficiency Thermal Power System-Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle System / Y. Kobayashi, Y. Ando, T. Kabata et al. Available from: https://www.mhi.co.jp/technology/review/pdf/e483/e483009.pdf Mitsubishi HeavyIndustries Technical Review Vol. 48 No. 3, 9-15 pp (Sept 2011).

Mitsubishi Power. Second Megamie unit enters service in Japan with Hazama Ando // Fuel Cells Bulletin. 2020 (May). Iss. 5.

Wiatros-Motyka M. Power plant design and management for unit cycling. CCC/295. − London, UK: International Centre for Sustainable Carbon, 2019. (Aug). − 94 p.

Reid I. A. B. Advances in non-energy products from coal. CCC/311. − London, UK: International Centre for Sustainable Carbon, 2021(Jun). − 90 p.

Minchener A. Development and deployment of future fuels from coal, Report prepared on behalf of the IEA Working Party on Fossil Fuels. − London, UK: International Centre for Sustainable Carbon, 2019 (Jun). − 102 p.

Chatterjee A. Air Products is eyeing US$10 billion investment in India coal gasification projects: Senior VP // Financial Express. 2020 (Aug). P. 1. Available from: https://www.financialexpress.com/industry/air-productsiseyeing-10-billion-investment-in-india-coal-gasification-projects-senior-v-p/2051971/

Xu J., Yang Y., Li Y.-W. Recent development in converting coal to clean fuels in China // Fuel. 2015 (July). P. 152; 122–130.

Argus. (2020b) India to divert 100mt coal to gasification projects. Available from: https://www.argusmedia.com/en/news/2137378-india-to-divert-100mn-t-coal-togasificationprojects Argus Media, London, UK (Sep 2020).

IEA (2019c) The Future of Hydrogen – Seizing today’s opportunities. – Paris: IEA, 2019 (June). − 203 p. Available from: https://webstore.iea.org/download/direct/2803?fileName=The_Future_of_Hydrogen.pdf

Muradov N. Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives // International Journal of Hydrogen Energy. 2017. Vol. 42, Issue 20 (May). P. 14058–14088.

Hydrogen Strategy: Enabling a low-carbon economy. − Washington, USA: US Department of Energy, 2020 (July). P. 21. Available from: https://www.energy.gov/sites/prod/files/2020/07/f76/USDOE_FE_Hydrogen_Strategy_July2020pdf

Zapantis A., Zhang T. Replacing 10 % of NSW Natural Gas Supply with Clean Hydrogen: Comparison of Hydrogen Production Options. − Melbourne, Australia: Global CCS Institute, 2020 (June). − 34 p. Available from: https://www.globalccsinstitute.com/wp-content/uploads/2020/11/NSW-Hydrogen-Production-Options-Report_2020.pdf 61. Li G. Life cycle analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification / G. Li, K. Zhang, B. Yang, et al. // Energy. 2019 (Mart). P. 174; 638−646.

Li J., Cheng W. Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification // International Journal of Hydrogen Energy. 2020 (July). P. 45; 27979−27993.

Bruce S. National Hydrogen Roadmap- Pathways to an economically sustainable hydrogen industry in Australia / S. Bruce, M. Temminghoff, J. Hayward et al. − Australia: CSIRO, 2018 (Aug). − 115 p. Available from: https://publications.csiro.au/rpr/pub?pid=csiro:EP184600

Hydrogen a renewable energy perspective, Report prepared by IRENA for the 2nd Hydrogen Energy Ministerial Meeting in Tokyo, Japan, September, 2019. − 51 p. Available from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf

Path to hydrogen competitiveness − A cost perspective. – Hydrogen Council, 2020 (Jan). − 88 p. Available from: https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf Hydrogen Council

Kelsall G. Carbon capture utilisation and storage – status barriers and potential. − London, UK: International Centre for Sustainable Carbon, 2020 (July). − 99 p.

Hydrogen scaling up. − Hydrogen Council, 2017 (Nov). − 80 p. Available from: https://hydrogencouncil.com/wpcontent/uploads/2017/11/Hydrogen-Scaling-up_Hydrogen-Council_2017. compressed.pdf

Aarnes J., Eijgelaar M., Hektor E. A. Hydrogen as an energy carrier- an evaluation of emerging hydrogen value chains. − DNV-GL, 2018 (Nov). − 60 p. Available from: https://www.dnvgl.com/publications/hydrogen-as-anenergy-carrier-134607 group technology research & research- position paper

Gardarsdottir S. O., Voldsund M., Roussanaly S. (2019) Comparative techno-economic assessment of low-CO2 hydrogen production technologies. HYPER Closing Seminar, Brussels, Kawasaki Heavy Industries, 2019 (Dec). − 21 p. Available from: https://www.sintef.no/projectweb/hyper/presentations-from-the-hyper-closeing-seminar/

Hydrogen in a low-carbon economy. − London, UK: Committee on Climate Change, 2018 (Nov). − 128 p. Available from: https://www.theccc.org.uk/publication/hydrogen-in-a-low-carbon-economy/

Barnes I. Water issues for coal-fired power plants. − London, UK: International Centre for Sustainable Carbon, 2019 (Oct). − 40 p.

Global Status of CCUS, Targeting Climate Change. − Melbourne, Australia: Global CCS Institute, 2021 (Oct). − 79 p. Available from: https://www.globalccsinstitute.com/wp-content/uploads/2021/10/2021-Global-Status-of-CCSReport_

Global_CCS_Institute.pdf

Hill B., Li X., Wei N. CO2-EOR in China: a comparative review // International Journal of Greenhouse Gas Control. 2020 (Dec). Volume 103, 103173. − 13 p.

Hydrogen production started at coal gasification and hydrogen refining facility // J. Power news. 2021 (Feb). − 2 p. Available from: https://www.jpower.co.jp/english/news_release/pdf/news210201e.pdf

Styring P., Dowson G., Tozer I. Synthetic Fuels Based on Dimethyl Ether as a Future Non-Fossil Fuel for Road Transport From Sustainable Feedstocks // Front. Energy Res. 2021 (May). 663331 p.

Zhu Q. The role of ammonia as a carbon-free fuel in decarbonisation of coal power generation. − London, UK: International Centre for Sustainable Carbon, 2021 (Oct). Available from: https://www.sustainable-carbon.org/blogs/the-role-of-ammonia-as-acarbon-free-fuel-in-decarbonisation-of-coal-power-generation/

The World’s First Global Hydrogen Supply Chain Demonstration Project. − Chiyoda Corporation, 2020 (May). Available from: https://www.chiyodacorp.com/en/service/spera-hydrogen/


Ссылки

  • На текущий момент ссылки отсутствуют.


© 1998 — 2024 НТФ «Энергопрогресс»


Адрес редакции:
129090, г. Москва, ул. Щепкина, д. 8
Телефон: +7 495 234-74-21
E-mail: energetik@energy-journals.ru