Роль угольных технологий с низкими выбросами в Азии
Аннотация
Статья подготовлена по материалам отчёта международного энергетического агентства (МЭА), выпущенного подготовленного группой авторов и в начале 2022 г. [1]. В нём выполнен подробный анализ литературных данных и информационных баз (218 с. текста более чем с 200 источниками). Столь большой материал пришлось заметно сократить, оставив наиболее интересные для российского читателя сведения.
Литература
Kelsall G., Baruya P. The role of low emission technologies in net zero Asia future, International Centre for Sustainable Carbon // IEA. 2022. January.
IPCC (2021). Climate change 2021 ‒ the physical science basis, Available from: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf. Intergovernmental Panel on Climate Change, IPCC AR6 WGI, 41 pp (Jul 2021).
IEA (2021e). Coal 2021 – analysis and forecast to 2024. Available from: https://www.iea.org/reports/coal-2021 IEA, Paris, France, 127 pp (Dec 2021).
Mills S. Potential markets for high efficiency low emissions coal-fired power plants. CCC/312. ‒ London, UK: International Centre for Sustainable Carbon, 2021 (Jun). ‒ 133 pp.
IEA (2020a). Coal 2020 ‒ Analysis and forecast to 2025. ‒ Paris, France: IEA. ‒ 124 pp (Dec 2020). Available from: https://iea.blob.core.windows.net/assets/00abf3d2-4599-4353-977c-f80e9085420/Coal_2020.pdf
IEA (2021a). Net Zero by 2050 ‒ a roadmap for the global energy sector, Available from: https://www.iea.org/reports/net-zero-by-2050 IEA special report, Paris, 222 pp (May 2021).
IChemE (2018). A Chemical Engineering Perspective on the Challenges and Opportunities of Delivering Carbon Capture and Storage at Commercial Scale, Available from: https://www.icheme.org/media/1401/CCUS-report-2018.pdf led by the IChemE Energy Centre Carbon Capture, Utilization and Storage Task Group, Rugby, UK, 28 pp (Apr 2018).
IRENA (2019b). Global energy transformation:- a roadmap to 2050 (2019 edition), Available from: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050- 2019Edition International Renewable Energy Association, Abu Dhabi, 52 pp (2019).
GCCSI (2020). Global Status of CCUS, Targeting Climate Change, Available from: https://www.globalccsinstitute.com/wp-content/uploads/2020/12/Global-Status-of-CCS-Report-2020_FINAL_December11.pdf Global CCS Institute, Melbourne, Australia, 81 pp (Dec 2020).
Bruce C. Learning by doing: the cost reduction potential for CCUS at coal-fired power plants. / C. Bruce, B Jacobs., S. Giannaris, B. Hardy. Available from: https://CCUSknowledge.com/
pub/CIAB_Report_LessonsByDoing_CCUS_onCoal_Nov2019(1).pdf Coal Industry Advisory Board Submission to the International Energy Agency, prepared by the International CCS Knowledge Centre, 43 pp (Nov 2019).
USDOE (2017) Accelerating Breakthrough Innovation in Carbon Capture, Utilization, and Storage, Available from: https://www.energy.gov/fe/downloads/accelerating-breakthrough-innovationcarbon- capture-utilization-and-storage Report of the Carbon Capture, Utilization and Storage Experts’ Workshop, Houston, US, US Department of Energy’s Office of Fossil Energy, 291 pp (Feb 2018).
Zapantis A., Townsend A., Rassool D. Policy Priorities to Incentivise Large Scale Deployment of CCUS, Available from: https://www.globalCCUSinstitute.com/wp-content/uploads/2019/04/TLReport-Policy-prorities-to-incentivise-the-large-scale-deployment-of-CCUS-digital-final-2019-1.pdf Global CCUS Institute, Melbourne, Australia, 32 pp (Apr 2019).
Feron P. Towards Zero Emissions from Fossil Fuel Power Stations / P. Feron, A. Cousins, K. Jiang et al. // International Journal of Greenhouse Gas Control. 2019. No 5. Pp 188‒202.
IEAGHG (2019). Towards zero emissions CCS in power plants using higher capture rates or biomass, Available from: https://climit.no/app/uploads/sites/4/2019/09/IEAGHG-Report-2019-02- Towards-zero-emissions.pdf IEAGHG Technical Report 2019-02, Cheltenham, UK, 100 pp (Mar 2019).
IEA (2020d). Transforming industry through CCUS, Available from: https://iea.blob.core.windows.net/assets/0d0b4984-f391-44f9-854ffda1ebf8d8df/Transforming_Industry_through_CCUS.pdf IEA, Paris, 60 pp (May, 2020).
Gil M. V., Rubiera F. (2019) Coal and biomass cofiring- fundamentals and future trends. New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking. Suárez-Ruiz I, Rubiera F., Diez M. A. (eds.) // Woodhead Publishing. 2019. (Aug). Pp 117‒140.
Zhang X. (2020) Technology developments in the cofiring of biomass. CCC/305. ‒ London, UK: International Centre for Sustainable Carbon, 2020 (Aug), ‒ 80 pp.
Рябов Г. А. Совместное сжигание биомассы и ископаемых топлив – путь к декарбонизации производства тепла и электроэнергии // Теплоэнергетика. 2022, № 6. С 1–15, DOI: 10.1134/S0040363622060054.
PwC (2021a). Biomass co-firing in coal-fired power plants: PLN's ambition to drive green energy, Available from: https://www.pwc.com/id/en/media-centre/infrastructure-news/may-2021/biomass-co-firing-in-coal-fired-power-plants-pln-s-ambition-to-drive-green-energy.html PWC Indonesia media centre (May 2021).
Truong A., Ha-Duong M., Nguyen-Trinh H. A. Feasibility and sustainability of co-firing biomass in coal power plants in Vietnam. In 5th Workshop on Cofiring biomass with coal, 16‒17 Sept 2015, Drax, UK, 21 pp.
Xing X. Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China / X. Xing, R. Wang, N. Bauer et al. // Nature Communications. 2021 (May). No 12. Pp. 1‒12.
IEA (2021c). The Role of Low-Carbon Fuels in the Clean Energy Transitions of the Power Sector/ Available from: https://www.iea.org/reports/the-role-of-low-carbon-fuels-in-the-clean-energytransitions-of-the-power-sector IEA, Paris, 116 pp (Oct 2021).
Kakaras (2021). Current picture of co-firing and future prospects for hydrogen-rich fuels, Available from: https://iea.blob.core.windows.net/assets/a76b2cc9-f7e3-459e-945e-91b8ff54d0fc/210318_Mitsubishi_E_Kakaras.pdf Mitsubishi Power Europe, presented at Berlin energy transition dialogue, 33 pp (Mar 2021).
Walton R. JERA studying co-firing attributes of ammonia in burners at coal-fired Japanese power station // Power Engineering. 2021. Jul. Available from: https://www.power-eng.com/coal/jera-studying-co-firing-attributesof- ammonia-in-burners-at-coal-fired-japanese-power-station.
Oki N. Japan’s Itochu joins forces on Canadian ammonia output. ‒ London, UK: Argus Media Ltd, 2021 (Aug). Available from: https://www.argusmedia.com/en/news/2240883-japans-itochu-joins-forces-on-canadian-ammoniaoutput.
Zhang X. Support mechanisms for cofiring biomass with coal. CCC/294. ‒ London, UK: International Centre for Sustainable Carbon, 2019 (Jun). ‒ 60 pp.
Sun R., Li W. Development prospects of co-firing biomass with coal in China, IEA Clean Coal Centre 7th cofiring biomass with coal workshop, 7‒8 Jun 2017, Beijing, China. ‒ 27 pp.
Lin J. Coal power sector in China, Japan and South Korea- Current status and the way forward for a cleaner energy system / J. Lin, T. Momoi, J. Lee et al. ‒ China: China Association for NGO Cooperation Beijing, 2019 (Feb). ‒ 59 pp.
Uno H., Kikuchi Y. Future perspectives- biomass co-firing in coal-fired power generation attracting domestic attention, Available at: https://www.mitsui.com/mgssi/en/report/detail/__icsFiles/afieldfile/2018/01/12/170703m_uno kikuchi_e.pdf Mitsui & Co Global Strategic Studies Institute Monthly Report, 5 pp (Jul 2017).
Indonesia LTR (2021). Long-Term Strategy for Low Carbon and Climate Resilience 2050, Available from: https://unfccc.int/sites/default/files/resource/Indonesia_LTS-LCCR_2021.pdf Indonesia LTS-LCCR 2050, 132 pp (July 2021).
Truong A. Reducing emissions of the fast-growing Vietnamese coal sector: the chances offered by biomass co-firing / A. Truong, P. Patrizio, S. Leduc et al. // Journal of Cleaner Production/ 2019 (Apr). No 215. Pp 1301‒1311.
S&P Global. World Electric Power Plants database. ‒ London, UK: S&P Global Market Intelligence, 2020 (Dec).
Lockwood T. A technology roadmap for high efficiency low emissions coal power plant. CCC/309. ‒ London, UK: International Centre for Sustainable Carbon, 2021 (Mar). ‒ 92 pp.
Sloss L. (2019) Technology readiness of advanced coal-based power generation systems. CCC/292. ‒ London, UK: International Centre for Sustainable Carbon, 2019 (Feb). ‒ 113 pp.
Wiatros-Motyka M. Increasing efficiency of pulverized coal-fired power plant. CCC/310. ‒ London, UK: International Centre for Sustainable Carbon, 2021 (Apr). ‒ 97 pp.
Pande S. A long view on AUSC programmes calls for vastly improved global technology. Presentation at: 3rd workshop on advanced ultrasupercritical power plant, Rome, Italy, 13‒14 Dec 2017. ‒ 14 pp.
Fukuda M. 700℃ AUSC technology development in Japan at Joint EPRI-123HiMAT International Conference on Advances in High Temperature Materials, Nagasaki, Japan (Oct 2019). Available at: http://www.kntec.net/2019/epri-123himat/ presented
Ye Y. Development of coal-fired power generation technology in China. Presentation at: 9th international conference on clean coal technologies, Houston, TX, USA, 3‒7 Jun 2019. ‒ 30 pp.
Dongfang (2017) The technology development of high efficiency 700 °C grade steam turbine. Presentation at: 3rd workshop on advanced ultrasupercritical power plant, Rome, Italy, 13‒14 Dec 2017. ‒ 26 pp.
Feng W. China’s national demonstration project achieves 50 % net efficiency with 600 degrees C class materials // Fuel. 2018 (July). No 223. Pp 344‒353.
Janowczyk D. Derates and Outages Analysis ‒ A Diagnostic Tool for Performance Monitoring of SaskPower’s Boundary Dam Unit 3 Carbon Capture Facility / D. Janowczyk, S. Giannaris, K. Hill et al. 15th International Conference on Greenhouse Gas Control Technologies GHGT-15, 15‒18 March 2021, Abu Dhabi, UAE. ‒ 13 pp. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3820207
Sheng L. Personal communication. ‒ Beijing, China: China Energy via CIAB, 2021 (Aug).
Liu L. Personal communication. ‒ Beijing, China: China Huaneng Group, 2021 (Oct).
Zhu Q. Power generation from coal using supercritical CO2 cycle, CCC/280. ‒ London, UK: International Centre for Sustainable Carbon, 2018 (Oct). ‒ 94 pp.
Lu X., Goff A., Fetvedt J. Allam Cycle Zero Emission Coal Power- Prefeed Final Report. Available from: https://netl.doe.gov/sites/default/files/2020-06/8-Rivers-Capital-Final-Pre-FEEDReport- Allam-Cycle-Coal-%208924331RFE000015-Public-Version-May-19.pdf Ref No: 89243319CFE000015 Coal-Based Power Plants of the Future, 88 pp (May 2020).
Kelsall G. Hydrogen production from coal. ICSC/313. ‒ London, UK: International Centre for Sustainable Carbon, 2021 (Aug). ‒ 109 pp.
Zhu Q. (2017) Power generation from coal using supercritical CO2 cycle, CCC/280. ‒ London, UK: International Centre for Sustainable Carbon, 2018 (Oct). ‒ 94 pp.
Zhang X. Current status of stationary fuel cells for coal power generation // Clean Energ. 2018 (Oct). Vol. 2. Is. 2. 126–139 pp.
Kobayashi Y. Extremely High efficiency Thermal Power System-Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle System / Y. Kobayashi, Y. Ando, T. Kabata, et al. // Mitsubishi Heavy Industries Technical Review. 2011. Vol. 48. No. 3. P. 9–15. Available from: https://www.mhi.co.jp/technology/review/pdf/e483/e483009.pdf
Mitsubishi Power. Second Megamie unit enters service in Japan with Hazama Ando // Fuel Cells Bulletin. 2020 (May). Is. 5.
Ссылки
- На текущий момент ссылки отсутствуют.
© 1998 — 2024 НТФ «Энергопрогресс»
Адрес редакции:
129090, г. Москва, ул. Щепкина, д. 8
Телефон: +7 495 234-74-21
E-mail: energetik@energy-journals.ru